AntOS 1.0.0-alpha

Github: https://github.com/lxsang/antos branch antos-1.0.0a

Demo: https://os.iohub.dev using user name and password: demo/demo

It has been a long time since version 0.x.x and now AntOS hits a major changes in its API. From version 1.0.0, AntOS no longer depends on Riot.js in its core UI API. This version introduces a brand new AntOS UI API called AFX API which is rewritten from bottom up. The entire AntOS core API is rewritten in Typescript (from Coffeescript) for better debugging, code maintenance and documenting.

Browser support: tested on Chrome, Firefox and partly Safari. Any browser that supports custom elements API should work. May have problem with Microsoft Edge.

Rust tip: (Unix) drop the current user privileges

Brief

Rust is a modern programing language which is claimed to be blazingly fast and memory-efficient. It syntactically similar to C++, but is designed to provide better memory safety while maintaining high performance and productivity:

  • Zero cost abstraction: allow a perfect balance between performance and productivity
  • Memory efficient with no runtime or garbage collector
  • Memory safe: Rust does not permit null pointers, dangling pointers, or data races in safe code.
  • Memory management using an ownership model guarantee memory-safety and thread-safety .
  • Great documentation, easy to use compiler and integrated packages/libraries management
  • Easy to interface with other language.
  • A bit of learning curve for the variable ownership and variable lifetime features.

Meet Dolly the robot

Ladies and gentlemen, please meet "Dolly the robot", the first version of my DIY mobile robot. My goal in this DIY project is to make a low-cost yet feature-rich ROS (Robot Operating System) based mobile robot that allow me to experiment my work on autonomous robot at home. To that end, Dolly is designed with all the basic features needed. To keep the bill of material as low as possible, i tried to recycle all of my spare hardware parts.

Specification

  • Robot's chassis is 3D printed, the chassis's plate design is borrowed from the design of Turtlebot 3 which is a smart design, IMO. The other hardware parts, however, are completely different from the Turtlebot 3.
  • IMU sensor with 9 DOF (accelerometer, magnetometer and gyroscope) for robot orientation measurement
  • Two DC motors with magnetic encoders using as wheels and odometer
  • Arduino Mega 2560 for low level control of the robot
  • Raspberry PI 3B+ with embedded Linux for high level algorithm and network communication. The ROS middle-ware on top of the Linux system offers a powerful robotic software environment
  • A 360 degree Neato LiDAR (laser scanner) up to 6 m range
  • A 8 Mega pixel camera (Raspberry PI camera)
  • Adafruit Motor shield V2 for motor controlling
  • 10000 Mah battery
  • ADS1115 analog sensor to measure and monitor battery usage
  • 0.95" (128x64) mini OLED display
  • The robot can be tele-operated using a bluetooth controller such as a PS4 controller

Applications

  • Localization and mapping (SLAM)
  • Obstacle avoidance
  • Autonomous navigation
  • Robot perception algorithms with LIDAR sensor and camera
  • Much more...
18/06/2019 PhaROS, ROS, Pharo, tutorial

A first step guide to PhaROS

PhaROS is a collection of Pharo libraries that implements the ROS (Robot Operating System ) based client protocol. It allows developing robotic applications right in the Pharo environment by providing an abstract software layer between Pharo and ROS. This guide makes an assumption that readers already have some basic knowledge about ROS, if this is not the case, please check the following links before going any further on this page:

Dispatching tasks to multiple Pharo VMs using SystemProcess

Doing a research work in robotic domain using Pharo as a prototype and implementation tool (via phaROS) is a whole new experience. It is quite impressive to see how quick an implementation idea becomes a working prototype/solution in Pharo thanks to its productive development environment. Most of my robotic applications are critical tasks which require real-time performance, some of them are heavily resource-demanding (CPU). Due to the single process nature of Pharo, running these tasks on the same VM results in a performance bottleneck, thus sometime, violate the real-time requirement of the application. Common solution to this problem is to dispatch these tasks to several native system processes to boost the performance. Unfortunately, this feature is not supported in current Pharo. My goal in this case is to have something that allow to:

  • maintain the use of Pharo's productive environment, so implementation the applications in another language is not an option
  • be able do dispatch tasks to different system processes, (in this case, tasks running on different VMs using the same image), and have a simple inter-VM communication mechanism

And that is when SystemProcess plays its role.

PTerm: yet another Terminal Emulator for Pharo

PTerm

I use Unix terminal a lot in work, when i work with Pharo and ROS (PhaROS), switching regularly between Pharo and native terminal application (for ROS command line) is kind of inconvenient. I've been thinking of using a terminal emulator application for Pharo. Googling around, i found out that there is no such thing that is ready for production work on modern Pharo, except a prototype work of Pavel Krivanek available at: https://github.com/pavel-krivanek/terminal. However, that code is messy, buggy, and not ready for production work . So i decided to take my time to work on it.

WVNC: web based protocol and API for accessing VNC server from browser via websocket

As with AntOS and its applications, one can remotely access and edit server resources from browser in a desktop-like manner. However, sometime these web based applications are not enough for some specific tasks. For a long time, I've thinking of a web based API for controlling remote desktop right from the browser ( or AntOS application). The VNC protocol is a good starting point. After playing around with libvncserver/libvncclient, i came up with wvnc a web based protocol and API for accessing VNC servers using websocket.

Controlling a Turtlebot using PhaROS: Goals planning and Automatic docking

This is a demonstration of my current work on controlling robot using ROS and PhaROS. For that task, I've developed a dedicated PhaROS package that defines:

  1. A base framework for ROS based visualization such as map, robot model, robot trajectory, etc.
  2. An Event-driven API for robot controlling
28/08/2018 ROS, SLAM, Metrics, evaluation, SSIM, MSE, NE

Evaluation of grid maps produced by a SLAM algorithm

When evaluating the performance of a SLAM algorithm, quantifying the produced map quality is one of the most important criteria. Often, the produced map is compared with (1) a ground-truth map (which can be easily obtained in simulation) or (2) with another existing map that is considered accurate (in case of real world experiment where the ground-truth is not always available ).

Basically, grid maps are images, so image similarity measurement metrics can be used in this case. In this post, we consider three different metrics: Mean Square Error (MSE), K-nearest based normalized error (NE) and Structure Similarity Index (SSIM)

AntOSDK tutorial: Developing a simple text editor

AntOS API in a nutshell

AntOS provides an abstract API for application development. The core API contains three main elements: the UI API, the VFS API and the VDB API, as shown in the following graph:

The UI API defines the basic UI elements such as Window, List, Tree, Dialogs, etc, and provides a generic interface for application and dialog UI development. UI design consists two steps: (1) the first step is to layout UI elements using antOS' scheme syntax (in XML format); (2) the second step is to handle user interaction using the coffeescript/ Javascript API.

Powered by antd server, (c) 2017 - 2018 Xuan Sang LE